Selected Store
Funko Pop! Bobble-Head Marvel: Doctor Strange in the Multiverse of Madness - Scarlet Witch 1034 Special Edition
Buy together
Collectible Figures
Marvel Comics Marvel Select: Doctor Strange Doctor Strange Action Figure height 18cm
Ad from TechstoresAddedAction Figures
Action Figure Doctor Strange in the Multiverse of Madness America Chavez Marvel Legends for 4+ Years
Ad from Kronos BooksAddedCollectible Figures
Diamond Comic Distributors Marvel: Dr Strange 2: Dr Strange 2 Figure
from 34,99 €AddedAction Figures
Action Figure Doctor Strange (Astral Form) Marvel Legends for 4+ Years 15cm.
Ad from Cosmo-marketAdded
Similar products
- Top rated
Funko
Funko Moment Bobble-Head Marvel: Doctor Strange in the Multiverse of Madness - Dead Strange & The Scarlet Witch 1027
Ad from AstronGameClubAddedFunko
Funko Pop! Marvel: Marvel - Spider-Gwen & Spider-Woman 2-Pack Special Edition
Ad from eFantasyAddedFunko
Funko Pop! Bobble-Head Marvel: Marvel - Infinity War Guardians Ship Gamora 1024
Ad from Shop13Added- Top rated
All shops
Prices are calculated for:Luxembourg, Other Payment Options
- 36,23 €
- 32,97 €
- 41,38 €
- 33,70 €
Description
Scarlet Witch figure with bobble-head from the Marvel comic series The X-Men.
- Material: vinyl
- Height: approximately 10 cm
SkuDescription|Brand
Specifications
- Category
- Marvel
- Brands
- Pop!
- Fandoms
- Doctor Strange in the Multiverse of Madness
- Edition Type
- Special Edition
- Features
- Bobble-Head
Important information
Specifications are collected from official manufacturer websites. Please verify the specifications before proceeding with your final purchase. If you notice any problem you can report it here.
Reviews
Verified purchase
exactly as it is in the photo
Translated from Greek ·Did you find this review helpful?Verified purchase
This review is about a variation of the productThe bestttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt
I have a few questions about the 2nd part of the question, the one that asks for the number of ways to distribute $n$ indistinguishable objects into $k$ distinguishable boxes, where each box can contain at most $m$ objects.
I think the answer is $\binom{n+k-1}{k}$, but I'm not sure how to prove it. I know that the number of ways to distribute $n$ distinguishable objects into $k$ distinguishable boxes is $k^n$, but I'm not sure how to use that here.Biko03 2019-02-25: Let us consider the number of ways to distribute the $n$ objects into the $k$ boxes such that no box is empty.
To do this, we can use the principle of inclusion exclusion. We have $k$ choices for the first object, $k-1$ choices for the second, $k-2$ choices for the third, etc... and so on. This gives us $k(k-1)(k-2)\cdots (k-n+1)$ ways to distribute the objects into the boxes. However, this counts the number of ways to distribute the objects without regard to the order in which they are placed into the boxes. Since the order in which the objects are placed does not matter, we must divide by $n!$ to correct for this overcounting. Thus, the number of ways to distribute the objects is
$$\frac{k(k-1)(k-2)\cdots (k-n+1)}{n!} = \frac{k!}{(k-n)!n!}$$
The number of ways to distribute the objects such that each box receives at least one object is then
$$\frac{k!}{(k-n)!n!}-\frac{k!}{(k-n-1)!n!}$$
This simplifies to
$$\frac{k!}{(k-n)!n!}-\frac{k!}{(k-n-1)!n!} = \frac{k!}{(k-n)!n!}\left(1-\frac{n}{k-n-1}\right) = \frac{k!}{(k-n)!n!}\left(\frac{k-n-1}{k-n-1}\right) = \frac{k!}{(k-n)!n!}$$
Thus, the number of ways to distribute $n$ indistinguishable balls into $k$ distinguishable boxes such that each box contains at least one ball is $\boxed{\binom{k}{n}}$.# Answer
\binom{k}{n}$$
Translated from Greek ·- Is it as it appears in the photo?
- Construction quality
- Value for money
Did you find this review helpful?Verified purchase
This review is about the variations: Comic CoversVery nice!!!! Perfect for someone addicted to Wanda like myself
Translated from Greek ·Did you find this review helpful?Verified purchase
This review is about a variation of the productVerified purchase
This review is about a variation of the product- It is not exactly as in the photo
- Construction quality
- Value for money
Verified purchase from Gamescom
This review is about a variation of the product- It is not exactly as in the photo
- Construction quality
- Value for money
Verified purchase
This review is about a variation of the product- Is it as it appears in the photo?
- Construction quality
- Value for money